
Real-time Frequency-Domain Digital Signal Processing on the Desktop

Zack Settel & Cort Lippe

McGill University, Music Faculty University at Buffalo, Department of Music
555 rue Sherbrooke Ouest Hiller Computer Music Studios
Montreal, Quebec H3A 1E3 222 Baird Hall
CANADA Buffalo, NY, USA 14260
zack@music.mcgill.ca lippe@acsu.buffalo.edu

Abstract
For some years, real-time general-purpose digital audio systems, based around specialized hardware, have been
used by composers and researchers in the field of electronic music, and by professionals in various audio-
related fields. During the past decade, these systems have gradually replaced many of the audio-processing
devices used in amateur and professional configurations. Today, with the significant increase in computing
power available on the desktop, the audio community is witnessing an important shift away from these
systems, which required specialized hardware, towards general purpose desktop computing systems featuring
high-level digital signal processing (DSP) software programming environments.

Introduction
An new real-time DSP programming environment called Max Signal Processing (MSP) [Zicarelli, 1997], was
released this past year for the Apple Macintosh PowerPC platform. This software offers a suite of signal
processing objects as an extension to the widely used MAX software environment, and provides new
opportunities for musicians and engineers wishing to explore professional-quality real-time DSP. Most
important, MSP provides a number of frequency-domain processing primitives that allow for the development
of sophisticated frequency-domain signal processing applications.

Working in MSP, the authors have developed a library of frequency-domain DSP applications for cross-
synthesis, analysis/resynthesis, denoising, pitch suppression, dynamics processing, advanced filtering,
spectrum-based spatialization, and phase vocoding. Much of this library was originally developed by the
authors on the IRCAM Signal Processing Workstation (ISPW) [Lindemann, 1991], and has been discussed in
previous papers [Settel & Lippe, 1994]. MSP is a direct descendant of ISPW Max [Puckette, 1991], but
provides greater portability and increased functionality. The authors have made improvements to the library,
while developments in new directions have been made possible by features of MSP which ameliorate
exploration in the frequency domain. Techniques and applications will be presented and discussed in terms of
both general algorithm and MSP implementation, providing a concrete point of departure for further
exploration using the MSP environment.

1. Frequency-domain signal processing operations and techniques
1.1 Fundamental operations
The standard operations which are used when processing audio signals in the frequency domain typically
include: (1) windowing of the time-domain input signal, (2) transformation of the input signal into a
frequency domain signal (spectrum) using the Fast Fourier Transform (FFT), (3) various frequency-domain
operations such as complex multiplication for convolution, (4) transformation of the frequency-domain
signals back into the time domain using the Inverse Fast Fourier Transform(IFFT), (5) and windowing of the
time-domain output signal. This section of the paper will discuss some of the basic operations and techniques
used in the various applications developed by the authors.

Implementation
The FFT object stores time-domain signals as buffers of samples upon which the FFT analysis is done. For
the purpose of discussion, the examples given in this paper make use of buffers of 1024 samples. Unlike
time-domain signals, a frequency-domain signal is represented by a succession of spectral "frames". Like
frames in a movie, the frames of FFT data represent a "snapshot" of a brief segment of an audio signal. A
frame consists of a certain number of equally spaced frequency bands called "bins". The number of bins is
equal to the size of the FFT buffer, thus the frames of FFT data have 1024 bins. Each bin describes the energy
in a specific part of the audio signal's frequency range.

The FFT object in MSP, based on Miller Puckette's ISPW implementation, outputs each frame, bin-by-bin,
using three sample streams running at the sampling rate. Thus, each bin is represented by three samples
consisting of "real" and "imaginary" values, and the bin number (index). At any given instant, each of the
FFT's three signal outlets, shown below, produce a sample describing the nth bin of the current FFT frame.
The IFFT is the complement of the FFT and expects, as input, real and imaginary values in the same format
as FFT output.

figure 1: sample-by-sample output of the FFT object figure 2: windowing function generator

As seen in the figure above, the index values provides a synchronization signal, making it possible to identify
bins within a frame, and recognize frame boundaries. The index values can be used to access bin-specific data
for various operations, such as attenuation or spatialization, and to read lookup tables for windowing.

Windowing
It is necessary when modifying spectral data to apply an envelope (window) to the time-domain input/output
of an FFT/IFFT pair, and to overlap multiple frames [Rabiner & Gold, 1975]. For simplicity's sake, the
windowing operation shown below corresponds to a two-overlap implementation (two overlapping FFT/IFFT
pairs); it is easily expanded for use in a four or eight-overlap implementation. Because of the flexibility of
MAX and MSP, arbitrary windowing functions can be conveniently generated (see figure 2). In figure 3, note
the use of the FFT frame index to read the lookup table-based windowing function in synchronization with the
frame. The frame index is scaled between 0 and 1 in order to read the windowing function stored in an
oscillator.

figure 3: typical two-overlap windowing of the input and output signals
1.2 Techniques
Bin-specific table lookup
Based on the implementation of MSP's FFT/IFFT objects, the authors have developed techniques for
performing various operations on frequency-domain signals. The ability to access specific spectral components
(bins) is central to performing frequency domain operations. The following figure illustrates how this can be
accomplished using lookup tables. A 1024-point FFT, using a lookup table, offers control of 512
equalization bands across the frequency spectrum. Note that the FFT's frame index signal is used to read the
lookup table without rescaling the index values.

figure 4: using a lookup table to obtain bin-specific attenuation values in a graphic equalizer implementation

Flavors of convolution
Multiplying one frequency-domain signal by another (convolution) involves the operation of complex
multiplication. This operation is at the heart of the many frequency-domain processing techniques developed
by the authors, and provides the basis for cross-synthesis, filtering, spatialization, phase vocoding, denoising
and other applications. A technique often used with convolution is the reduction of a signal's spectrum to its
amplitude and/or phase information. Four examples of convolution are shown below; each one corresponds to
a particular type of signal processing application.

figure 5: simple convolution retaining the figure 6: convolution of phase/amplitude
phases and amplitudes of each input source and amplitude-only spectra

figure 7: convolution of phase-only and figure 8: phase rotation
amplitude-only spectra

2. Improvements to cross-synthesis: increasing spectral intersection
Cross-synthesis is based on convolution (the multiplication of one spectrum by another). As anyone who has
worked with cross-synthesis knows, the choice of the two input signals is critical to the outcome of the
operation. Input signals with little common spectra (spectral intersection) will produce poor results. In the
worst case, input signals with no common spectra will produce silence. By using filtering and dynamics
processing (compressor/limiter) techniques to redistribute the energy in a given spectrum, it is possible to
modify the degree of spectral intersection when convolving two frequency-domain signals with dissimilar
spectra. Two approaches are presented below.

2.1 Amplitude spectrum smoothing
An amplitude spectrum with deep peaks and notches (the case for a pitched sound) makes a good candidate for
spectral smoothing. With MSP's FFT implementation, it is quite easy to apply a second-order low-pass
filter to an amplitude spectrum. The filter's cutoff frequency, and damping parameters control the degree of
spectral smoothing, averaging the energy across empty bins, thereby reducing the sharp notches or peaks
which are harmonically distributed across the spectrum of pitched signals. The smoothed spectrum shown
below will combine via multiplication much more effectively with the spectrum of another sound—
particularly when the other sound also has pronounced peaks and notches distributed differently across its
spectrum. For example, this technique can prove useful in crossing the amplitude spectrum of a singer with
the spectrum of a pitched instrument, such as a saxophone.

figure 9: top: notched amplitude spectrum of Sound A
middle: Sound A's amplitude spectrum smoothed to reduce notches (zeros)
bottom: notched spectrum of Sound B

Note that the degree of spectral intersection between sounds A and B is much greater after smoothing has been
applied to sound A's amplitude spectrum.

2.2 Bin-independent dynamics processing
The compressor/expander
Boosting weaker components of an amplitude spectrum is another technique which increases the potential
degree of spectral intersection in cross-synthesis. The authors have implemented a compressor/expander which
operates independently on each frequency bin of a spectrum [Settel & Lippe, 1995]. As shown below, each
bin's amplitude is used as an index into a lookup table containing a compression/expansion function; the
value read from the table is then used to alter (scale) the particular bin's amplitude. The degree of dynamics
processing is controlled by biasing or scaling the lookup table index.

figure 10: dynamics processing to boost weaker spectral components figure 11: MSP dynamics processor
implementation

Note: compression/expansion functions may also be used to attenuate stronger amplitude components. This
can be an effective check against extreme amplitude levels which result when crossing two sounds with
similar spectral energy distributions.

Using a constant-amplitude phase-only spectrum
Finally, it is possible to maximize a spectrum's potential for intersection with another spectrum by forcing
the amplitude information in each bin of the spectrum to a constant value of one (unity). Phase information
remains unmodified. The resulting constant-amplitude phase-only spectrum will combine with the spectrum
of another sound wherever there is energy in the other sound's spectrum. Figure 7, shown earlier, illustrates a
technique that maximizes the potential for spectral intersection: a phase-only constant-amplitude spectrum is
crossed with an amplitude spectrum

In any spectrum, the phase of "empty" (near 0 amplitude) bins is undefined. Consider two spectra with
dissimilar spectral energy distributions. When forcing the amplitude of one sound's empty bins to unity and
performing cross-synthesis with the amplitude spectrum of another sound, the resulting spectrum will tend to
contain components whose phase is undefined (random). Thus, the resulting sound will be stripped of any
pitch or stable frequency information.

Controlling the degree of spectral intersection
By combining the dynamics processing technique with the constant-amplitude forcing techniques described
above, the degree of amplitude forcing towards unity can be continuously controlled. Thus, it is possible to
specify how much of a given spectrum's original amplitude information, if any, will be used in a cross-
synthesis operation with another spectrum.

figure 12: the amplitude spectrum "intersection" parameter

3. Audio-rate control of FFT-based processing
The Max/MSP environment has two run-time schedulers: the Max "control" scheduler, which is timed on the
basis of milliseconds, and the MSP "signal" scheduler, which is timed at the audio sampling rate [Puckette,
1991]. In FFT-based processing applications, where changes to the resulting spectrum are infrequent, MSP's
control objects may be used to provide control parameters for the processing. This is both precise and
economical. In the FFT-based equalization application shown in figure 4, a lookup table is used to describe a
spectral envelope that is updated at the control rate.

However, updating lookup tables at the control rate has band-width limitations. The rapidity with which a
lookup table can be altered is limited, giving the filtering certain static characteristics. Using 512 sliders to
control individual FFT bins, drawing a filter shape for a lookup table with the mouse, or changing the lookup
table data algorithmically provides only limited time-varying control of the filter shape. In addition, the
amount of control data represented in a lookup table is large and cumbersome. Significant and continuous
modification of a spectrum, as in the case of a sweeping band-pass filter, is not possible using MSP's control
objects, since they can not keep up with the task of providing 1024 parameter changes at the FFT frame rate
of 43 times a second (at the audio sampling rate of 44,100 samples per second).

Keeping in mind that the FFT data being filtered is signal data, a more dynamic approach to filtering is to
update lookup tables at the signal rate (the audio sampling rate). Using simple oscillators for table lookup,
well-known wavefrom generation and synthesis techniques can be used to provide dynamic control of filtering.
FM, AM, waveshaping, phase modulation, pulse-width modulation, mixing, clipping, etc., all have the
potential to provide complex, evolving waveforms which can be used as spectral envelopes to provide a high
level of flexibility, plasticity, and detail to filtering. The use of operations such as stretching, shifting,
duplication (wrapping), inversion, retrograde and nonlinear distortion (waveshaping) also provide
comprehensive means for modifying these spectral envelopes (waveforms). Most important, the parameters of
these waveform-based techniques are few, familiar and easy to control. Additionally, lookup tables can be read
in non-linear fashion; control is not restricted to the linear frequency scale, thus making possible the
implementation of a constant-Q bandpass filter.

FFT sync. index source waveform A (cosine)

lookup table distortion operations on source wavefrom A:

offset-X phase period multiply zoom-X invert-X (of zoom-X)

using nonlinear distortion of the FFT sync. index to read source waveform A:

distorted source waveform A period multiply combining operations and additional waveforms

figure 13: generating spectral envelopes via simple operations on waveforms

While the discussion in this section has been limited to filtering applications, audio-rate control of FFT-based
processing applies equally well to all FFT-based applications where a high degree of processing control is
required at the frame rate. The authors have implemented the above mentioned techniques in the following
applications: spatialization (bin-by-bin), denoising, dynamics processing, and cross-synthesis. We believe that
these techniques hold great promise for control-intensive FFT-based applications.

Conclusion
The introduction of MSP offers new possibilities for musicians and researchers to develop real-time frequency-
domain digital signal processing applications on the desktop. In addition, the use of simple waveform-based
techniques for low-dimensional audio-rate control of FFT-based processing has great potential: the parameters
are few, familiar and easy to control, and direct mappings of real-time audio input from musicians to the
control of FFT-based DSP is made possible.

Acknowledgments
The authors would like to thank Miller Puckette, David Zicarelli and the Convolution Brothers for making
this work possible.

References
Lindemann, E., Starkier, M., and Dechelle, F. 1991. "The Architecture of the IRCAM Music Workstation."

Computer Music Journal 15(3), pp. 41-49.
Puckette, M., 1991. "Combining Event and Signal Processing in the Max Graphical Programming

Environment." Computer Music Journal 15(3), pp. 68-77.
Puckette, M., 1991. "FTS: A Real-time Monitor for Multiprocessor Music Synthesis." Music Conference.

San Francisco: Computer Music Association, pp. 420-429.
Rabiner and Gold, 1975, "Theory and Application of Digital Signal Processing ", Prentice-Hall
Settel, Z., and Lippe, C., 1994. "Real-time Timbral Transformation: FFT-based Resynthesis", Contemporary

Music Review Vol. 10, United Kingdom, Harwood Academic Publishers, pp. 171-179.
Settel, Z., and Lippe, C., 1995. "Real-time Musical Applications using Frequency-domain Signal

Processing" IEEE ASSP Workshop Proceedings, Mohonk New York.
Zicarelli D., 1997. "Cycling74 Website", www.cycling74.com.

